The Search for Efficient
Boolean Satisfiability Solvers:
An Abbreviated History

Sharad Malik
Dept. of Electrical Engineering
Princeton University

Acknowledgements

e Chaff authors:
Matthew Moskewicz (now at UC Berkeley)
Conor Madigan (now at MIT)

e Princeton University SAT group:
Daljue Tang
Yinlel Yu
Yogesh Mahajan
Zhaohui Fu
Lintao Zhang (now at Microsoft Research)

Outline

e Introduction

e Davis Putnam (DP)
Resolution based existential quantification

e Davis Logemann Loveland (DLL)
Search based algorithms

e Conflict driven learning (GRASP)
e Efficient deduction and branching (Chaff)
e Summary

SAT in a Nutshell

e Given a Boolean formula (propositional logic formula), find a
variable assignment such that the formula evaluates to 1, or
prove that no such assignment exists.

F=(a+hb)@ +b’+c)

e For n variables, there are 2" possible truth assignments to be
checked.

e First established NP-Complete problem.

S. A. Cook, The complexity of theorem proving procedures,
Proceedings, Third Annual ACM Symp. on the Theory of
Computing,1971, 151-158

Problem Representation

e Conjunctive Normal Form
e F=(a+hb)(a +b +c)

~—

clause
literal

e Simple representation (more efficient data structures)

e Logic circuit representation
e Circuits have structural and direction information

e Circuit — CNF conversion is straightforward

d=(a+Dhb) e=(c-d)
(@a+b+d) (c’+d +e)
(@' +d) (d +e’)

(b’ +d) Z:Dd—ﬁ (c +e)
-

C

Why Bother?

e Core computational engine for major applications
o EDA
Testing and Verification
Logic synthesis
FPGA routing
Path delay analysis
And more...

o Al

Knowledge base deduction
Automatic theorem proving

Outline

e Davis Putnam (DP)
Resolution based existential quantification

e Davis Logemann Loveland (DLL)
Search based algorithms

e Conflict driven learning (GRASP)
e Efficient deduction and branching (Chaff)
e Summary

Resolution

e Resolution of a pair of clauses with exactly ONE incompatible
variable

a+b+@ -+ g+ h +@Hf

a+b+g+h +f

Davis Putnam Algorithm

M .Davis, H. Putnam, “A computing procedure for quantification theory", J. of
ACM, Vol. 7, pp. 201-214, 1960 (360 citations in citeseer)

e Existential abstraction using resolution
e Iteratively select a variable for resolution till no more variables are left.

F= @B o+ ¢ + M@+ o) F=(@+®)@+@) (@ +o)@ +c)
N

~J / /

FbF=(a+@+e)@+e+f) bF=@ @+c)@+c)
e bar- O
dbc F= (a+e+f) W4
dbcaef F= 1 Jbac F= ()
AT UNSAT

Potential memory explosion problem!

Outline

e Davis Logemann Loveland (DLL)
Search based algorithms

e Conflict driven learning (GRASP)
e Efficient deduction and branching (Chaff)
e Summary

DLL Algorithm

e Davis, Logemann and Loveland

M. Davis, G. Logemann and D. Loveland, “A Machine Program for
Theorem-Proving", Communications of ACM, Vol. 5, No. 7, pp. 394-397,
1962 (272 citations)

e Also known as DPLL for historical reasons
e Basic framework for many modern SAT solvers

Basic DLL Procedure - DFS

(@ +b +c)
(a+c+d)
(a+c+d)
(a+c’ +d)
(a+c +d)
(b’ +c’ +d)
(@ +b+c)
(@ +Db +c)

Basic DLL Procedure - DFS

(@ +b +c)
(a+c+d)
(a+c+d)
(a+c’ +d)
(a+c +d)
(b’ +c’ +d)
(@ +b+c)
(@ +Db +c)

()

Basic DLL Procedure - DFS

(@+b+c) 0
(a+c+d) ,///jggglecskn1

(a+c+d)
(a+c’ +d)
(a+c +d)

‘U+d+d|

Basic DLL Procedure - DFS

(a+c +d)
(a+c+d)
(a+c +d)

< Decision

Basic DLL Procedure - DFS

(a+c +d)
(a+c+d)

< Decision

Basic DLL Procedure - DFS

LAt Conflict!
Implication Graph ®A®

(a+c+d)

Basic DLL Procedure - DFS

LAt Conflict!
Implication Graph A
@ (@+c+ d’)

Basic DLL Procedure - DFS

Basic DLL Procedure - DFS

: Conflict!
@ (@a+c' + d’)

Basic DLL Procedure - DFS

Basic DLL Procedure - DFS

Basic DLL Procedure - DFS

Oi < Decision

: Conflict!
@ (@a+c' + d’)

Basic DLL Procedure - DFS

Basic DLL Procedure - DFS

1 < Forced Decision

: Conflict!
@ (@a+c' + d’)

Basic DLL Procedure - DFS

(@ +b +c)
(a+c+d)
(a+c+d)
(a+c’ +d)
(a+c +d)
(b’ +c’ +d)
(@ +b+c)
(@ +Db +c)

Basic DLL Procedure - DFS

< Forced Decision

Basic DLL Procedure - DFS

0/ «< Decision

Basic DLL Procedure - DFS

: Conflict!
@ (@+b+ c’)

Basic DLL Procedure - DFS

Basic DLL Procedure - DFS

1 < Forced Decision

Basic DLL Procedure - DFS

@ (a’+b’+c) (b’+c’+d

Basic DLL Procedure - DFS

@ (a’+b’+c) (b’+c’+d

Implications and Boolean
Constraint Propagation

e Implication

e Avariable is forced to be assigned to be True or False based on
previous assignments.

e Unit clause rule (rule for elimination of one literal clauses)

e An unsatisfied clause is a unit clause if it has exactly one unassigned
literal.

Satisfied Literal
(@a+b’+c)(b +c’)(@ +HE') Unsatisfied Literal

a=T,b=T,cis unassigned Unassigned Literal

e The unassigned literal is implied because of the unit clause.

e Boolean Constraint Propagation (BCP)
e Iteratively apply the unit clause rule until there is no unit clause available.
e a.k.a. Unit Propagation

e Workhorse of DLL based algorithms.

Features of DLL

e Eliminates the exponential memory requirements of DP

e EXxponential time is still a problem

e Limited practical applicability — largest use seen in automatic
theorem proving

e Very limited size of problems are allowed

32K word memory
Problem size limited by total size of clauses (1300 clauses)

Outline

e Conflict driven learning (GRASP)
e Efficient deduction and branching (Chaff)
e Summary

GRASP

e Marques-Silva and Sakallah [SS96,5S99]

J. P. Marques-Silva and K. A. Sakallah, "GRASP -- A New Search
Algorithm for Satisfiability,“ Proc. ICCAD 1996. (58 citations)

J. P. Marques-Silva and Karem A. Sakallah, “GRASP: A Search Algorithm
for Propositional Satisfiability”, IEEE Trans. Computers, C-48, 5:506-521,
1999. (19 citations)
e Incorporates conflict driven learning and non-chronological
backtracking

e Practical SAT instances can be solved in reasonable time
e Bayardo and Schrag’s RelSAT also proposed conflict driven
learning [BS97]

R. J. Bayardo Jr. and R. C. Schrag “Using CSP look-back techniques to
solve real world SAT instances.” Proc. AAAI, pp. 203-208, 1997(144

citations)

Conflict Driven Learning and
Non-chronological Backtracking

X1 + x4

X1 + X3 + x8&
X1 + x8 + x12
x2 + x11

X7+ X3 + X9
X7 + X8 + X9’
X7 +x8 + x10’
X7 +x10 + x12’

Conflict Driven Learning and
Non-chronological Backtracking

X1 + x4 x1=0
X1 + x3’ + x8 //
X1 + x8 + x12 »

x2 + x11

X7 + X3 + X9
X7 + X8 + X9’
X7 +x8 + x10’
X7 +x10 + x12’

O x1=0

Conflict Driven Learning and
Non-chronological Backtracking

X1 + X3 + X8 //
X1 + x8 + x12 »

x2 + x11

X7 + X3 + X9
X7 + X8 + X9’
X7 +x8 + x10’
X7 +x10 + x12’

O x4=1

oo

Conflict Driven Learning and
Non-chronological Backtracking

X1+ x4
X1+ x3" + X8
X1+ x8 +x12
x2 + x11
X7+ X3 + X9
X7 + X8 + X9’
X7 +x8 + x10’
X7 +x10 + x12’

O x4=1

(41:0 O x3=1

x1=0, x4=1

x3=1

000
Conflict Driven Learning and 3
Non-chronological Backtracking | ¢
x1 + x4 x1=0, x4=1
X1 + x3' + x8 //
X1+ x8 + x12 »
2+ x3=1, x8=0
i?’ +Xx131’ + X9 @ \
X7+ x8 + X9’ 2
X7+ x8 + x10’

X7+ x10 + x12’
O x4=1
x1=0 x3=1

‘ x8=0

000
Conflict Driven Learning and 1+
Non-chronological Backtracking | ¢
%1 + x4 x1=0, x4=1
X1+ x3" + x8 ///
X1+ x8 + x12 »
2 4 x3=1, x8=0, x12=1
i?’ +Xx131’ + X9 @ \
X7+ x8 + X9’ 2
X7 + x8 + x10’

X7 +x10 + x12’

O x4=1

x8=0
x12=1

Conflict Driven Learning and
Non-chronological Backtracking

X1+ x4

X1 + X3’ + X8
X1+ x8 +x12
x2 +x11
X7+ X3 + X9
X7 + X8 + X9’
X7 + x8 + x10’
X7 +x10 + x12’

O x4=1

O x2=0

@ x1=0, x4=1
/7

@ x3=1 x8=0, x12=1

x2=0

x8=0
x12=1

Conflict Driven Learning and
Non-chronological Backtracking

X1+ x4

X1 + X3’ + X8
X1+ x8 +x12
X2 + x11
X7+ X3 + X9
X7 + X8 + X9’
X7 + x8 + x10’
X7 +x10 + x12’

x1=0, x4=1

@ x3=1 x8=0, x12=1

x2=0, x11=1

Conflict Driven Learning and
Non-chronological Backtracking

@ x1=0, x4=1
/7

X1+ x4

X1 + X3’ + X8

X1+ x8 +x12

X2 + x11

X7 +x3 +x9

X7+ X8 + X9’

X7 +x8 + x10’

X7 +x10 + x12’

x3=1, x8=0, x12=1

x2=0, x11=1

X7=1

Conflict Driven Learning and
Non-chronological Backtracking

X1+ x4

X1 + X3’ + X8

X1+ x8 +x12

X2 + x11

X7 +x3 +x9

X7 + X8 + X9’

X7 +x8 + x10’

X7 +x10 + x12’

x9=1

x9=0

x12=1

x1=0, x4=1

@ x3=1 x8=0, x12=1

@ x7=1 x9= 0, 1

x2=0, x11=1

Conflict Driven Learning and
Non-chronological Backtracking

X1+ x4

X1 + X3’ + X8
X1+ x8 +x12
X2 + x11

X7 +x3 +x9
X7 + X8 + X9’
X7 +x8 + x10’
X7 +x10 + x12’

@ x1=0, x4=1
/7

@ x3=1 x8=0, x12=1
@ x2=0, x11=1
/7

@ x7=1 x9=1

X3=1AX7=1AX8=0 — conflict

Conflict Driven Learning and
Non-chronological Backtracking

X1+ x4

X1 + X3’ + X8
X1+ x8 +x12
X2 + x11

X7 +x3 +x9
X7 + X8 + X9’
X7 +x8 + x10’
X7 +x10 + x12’

@ x1=0, x4=1
/7

@ x3=1 x8=0, x12=1
@ x2=0, x11=1
/7

@ x7=1 x9=1

X3=1AX7=1AX8=0 — conflict

Add conflict clause: x3'+x7'+x8

Conflict Driven Learning and
Non-chronological Backtracking

X1+ x4

X1 + X3’ + X8

X1+ x8 +x12

X2 + x11

X7 +x3 +x9 : :

<7 + X8 + XO > X3 +X 7 +X8
X7 +x8 + x10’

X7 +x10 + x12’

@ x1=0, x4=1
/7

@ x3=1 x8=0, x12=1
@ x2=0, x11=1
/7

@ x7=1 x9=1

X3=1AX7=1AX8=0 — conflict

Add conflict clause: x3'+x7'+x8

Conflict Driven Learning and
Non-chronological Backtracking

X1 + x4

X1+ x3" + x8&
X1+ x8 + x12
X2+ x11

X7+ x3 + x9
X7+ X8 + x9’
X7+ x8 + x10’
X7+ x10 + x12’
X3 + X8 + X7’

O x4=1

@ x1=0, x4=1
/7
@ x3=1 x8=0, x12=1

Backtrack to the decision level of x3=1
With implication x7 =0

What'’s the big deal?

Conflict clause: x1’+x3+x5’

Significantly prune the search space —
learned clause is useful forever!

Useful in generating future conflict
clauses.

000
0000
0000
XX)
| X)

Restart :

e Abandon the Conflict clause: x1’+x3+Xx5’

current search

tree and

reconstruct a

new one

e Helps reduce
variance - adds
to robustness in
the solver

e The clauses
learned prior to
the restart are
still there after
the restart and
can help pruning
the search space

SAT becomes practical!

e Conflict driven learning greatly increases the capacity of SAT
solvers (several thousand variables) for structured problems
e Realistic applications became plausible
Usually thousands and even millions of variables
Typical EDA applications that can make use of SAT
circuit verification

FPGA routing
many other applications...

e Research direction changes towards more efficient implementations

Outline

e Efficient deduction and branching (Chaff)
e Summary

Chatff

e One to two orders of magnitude faster than
other solvers...

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik,“Chaftf:
Engineering an Efficient SAT Solver” Proc. DAC 2001. (43 citations)
e Widely Used:
Formal verification
Hardware and software
BlackBox — Al Planning

Henry Kautz (UW)

NuSMV — Symbolic Verification toolset

A. Cimatti, et al. “NuSMV 2: An Open Source Tool for Symbolic Model Checking” Proc.
CAV 2002.

GrAnDe — Automatic theorem prover

Alloy — Software Model Analyzer at M.I.T.

haRVey — Refutation-based first-order logic theorem prover
Several industrial users — Intel, IBM, Microsoft, ...

Large Example: Tough

e Industrial Processor Verification
e Bounded Model Checking, 14 cycle behavior
e Statistics

1 million variables

10 million literals initially
200 million literals including added clauses
30 million literals finally

4 million clauses (initially)
200K clauses added

1.5 million decisions
3 hours run time

Chaff Philosophy

e Make the core operations fast

profiling driven, most time-consuming parts:
Boolean Constraint Propagation (BCP) and Decision

e Emphasis on coding efficiency and elegance
e Emphasis on optimizing data cache behavior

e As always, good search space pruning (i.e. conflict resolution
and learning) is important

Recognition that this is as much a large (in-memory) database
problem as it is a search problem.

Motivating Metrics: Decisions,
Instructions, Cache Performance and

Run Time
1dIx ¢ _mc_ex _bp f
Num Variables 776
Num Clauses 3725
Num Literals 10045
zChaff SATO GRASP
Decisions 3166 3771 1795
Instructions 86.6M 630.4M 1415.9M
#L1/L2 24M [1.7TM 188M / 79M 416M / 153M
accesses
% L1/L2 4.8% [4.6% 36.8%/9.7% 32.9% / 50.3%
misses
Seconds 0.22 4.41 11.78

BCP Algorithm (1/8)

e What “causes” an implication? When can it occur?

All literals in a clause but one are assigned to False

(vl +v2 + v3): implied cases: (O+0+v3)or(0+v2+0)or(vi+0+0)
For an N-literal clause, this can only occur after N-1 of the literals have
been assigned to False

So, (theoretically) we could completely ignore the first N-2 assignments
to this clause

In reality, we pick two literals in each clause to “watch” and thus can
ignore any assignments to the other literals in the clause.

Example: (v1 + v2 + v3 + v4 + v5)

(vi=X+v2=X+v3=?{i.e. XorOor 1} + v4=? + v5=?)

BCP Algorithm (1.1/8)

e Big Invariants
Each clause has two watched literals.

If a clause can become unit via any sequence of assignments, then this
sequence will include an assignment of one of the watched literals to F.
Example again: (vl + v2 + v3 + v4 + vb)
(v1=X+v2=X +Vv3=? + v4=? + v5=7?)
e BCP consists of identifying unit (and conflict) clauses (and the
associated implications) while maintaining the “Big Invariants”

BCP Algorithm (2/8)

e Let’s illustrate this with an example:

V2 +
vl +
vl +
v1yl®+

vl’

v3 + vl + v4 + V5
v2 + v3’

v2’

v4

(XY
o000
o000
3
BCP Algorithm (2.1/8) :
e Let’s illustrate this with an example:
watched v2 + v3 + vl + v4 + V5
literals — 1 + v2 + v3~
vl + v2°
vli®+ v4
) One literal clause breaks invariants: handled
@ ‘ as a special case (ignored hereatfter)

m [nitially, we identify any two literals in each clause as the watched ones
m Clauses of size one are a special case

BCP Algorithm (3/8)

e We begin by processing the assignment vl = F (which is implied by
the size one clause)

v2 + v3 + vl + v4 + v5

State: (vl1=F) vl + v2 + v3~’

Pending: vl + v2’

vli®+ v4

BCP Algorithm (3.1/8)

e We begin by processing the assignment vl = F (which is implied by
the size one clause)

State: (vl1=F)

Pending:

v2 + v3 + vl + v4 + v5

EZ> vl + v2 + v3~

E:> vl + v2”

vli®+ v4

To maintain our invariants, we must examine each clause where the

assignment being processed has set a watched literal to F.

BCP Algorithm (3.2/8)

e We begin by processing the assignment vl = F (which is implied by
the size one clause)

v2 + v3 + vl + v4 + v5

State: (vl1=F) vl + v2 + v3~’

Pending: vl + v2’

|:> vli’+ v4
m To maintain our invariants, we must examine each clause where the

assignment being processed has set a watched literal to F.

m We need not process clauses where a watched literal has been setto T,
because the clause is now satisfied and so can not become unit.

BCP Algorithm (3.3/8)

e We begin by processing the assignment vl = F (which is implied by
the size one clause)

) V2 + V3 + vl + v4 + V5

State: (vl1=F) vl + v2 + v3~’
Pending: vl + v2’
vli’+ v4

m To maintain our invariants, we must examine each clause where the
assignment being processed has set a watched literal to F.

m We need not process clauses where a watched literal has been setto T,
because the clause is now satisfied and so can not become unit.

m We certainly need not process any clauses where neither watched literal
changes state (in this example, where v1 is not watched).

BCP Algorithm (4/8)

e Now let's actually process the second and third clauses:

v2 + v3 + vl + v4 + v5
vli + v2 + v3’
vl + v2’

v1i’+ v4

State: (vl1=F)

Pending:

BCP Algorithm (4.1/8)

e Now let’s actually process the second and third clauses:

v2 + v3 + vl + v4 + v5
vli + v2 + v3’
vl + v2’

vli®+ v4

State: (vl1=F)

Pending:

D

v2 + v3 + vl + v4 + v5
vl + v2 + v3~’
vl + v2’

vli®+ v4

State: (vl1=F)

Pending:

m For the second clause, we replace v1 with v3' as a new watched literal.
Since v3'’ is not assigned to F, this maintains our invariants.

BCP Algorithm (4.2/8)

e Now let's actually process the second and third clauses:

v2 + v3 + vl + v4 + v5

vli + v2 + v3’
vl + v2’

vli®+ v4

State: (vl1=F)
Pending:

D

v2 + v3 + vl + v4 + v5
vl + v2 + v3~’
vl + v2’

vli®+ v4

State: (vl1=F)
Pending: (v2=F)

m For the second clause, we replace v1 with v3' as a new watched literal.
Since v3'’ is not assigned to F, this maintains our invariants.

m The third clause is unit. We record the new implication of v2’, and add it to
the queue of assignments to process. Since the clause cannot again

become unit, our invariants are maintained.

BCP Algorithm (5/8)

e Next, we process v2'. We only examine the first 2 clauses.

v2 + v3 + vl + v4 + V5

vl + v2 + v3° [;>

vl + v2’

vli®+ v4

v2 + v3 + vl + v4 + Vv5
vl + v2 + v3°
vl + v2’

vli®+ v4

State: (vl=F, v2=F)
Pending:

State: (vl=F, v2=F)
Pending: (v3=F)

m For the first clause, we replace v2 with v4 a
IS not assigned to F, this maintains our inva

s a new watched literal. Since v4
riants.

m The second clause is unit. We record the new implication of v3’, and add it to
the queue of assignments to process. Since the clause cannot again

become unit, our invariants are maintained.

BCP Algorithm (6/8)

e Next, we process v3'. We only examine the first clause.

v2 + v3 + vl + v4 + V5

vl + v2 + Nv3° [;>

vl + v2’

vli®+ v4

v2 + v3 + vl + v4 + Vv5
vl + v2 + Nv3°
vl + v2’

vli®+ v4

State: (vl=F, v2=F, v3=F)
Pending:

State: (vl=F, v2=F, v3=F)
Pending:

m For the first clause, we replace v3 with v5 a
IS not assigned to F, this maintains our inva

s a new watched literal. Since v5
riants.

m Since there are no pending assignments, and no conflict, BCP terminates
and we make a decision. Both v4 and v5 are unassigned. Let’s say we

decide to assign v4=T and proceed.

BCP Algorithm (7/8)

e Next, we process v4. We do nothing at all.

v2 + v3 + vl + v4d + Vv5

vl + v2 + Nv3°

vl + v2’

vli’+ v4

State: (vl=F, v2=F, v3=F,
v4=T)

D

v2 + v3 + vl + v4d + Vv5
vl + v2 + Nv3°
vl + v2’

vli’+ v4

State: (vl=F, v2=F, v3=F,
v4=T)

m Since there are no pending assignments, and no conflict, BCP terminates
and we make a decision. Only v5 is unassigned. Let’'s say we decide to

assign v5=F and proceed.

BCP Algorithm (8/8)

e Next, we process v5=F. We examine the first clause.

v2 + v3 + vl +{v4d + V5

vl + v2 + Nv3°

vl + v2’

vli’+ v4

State: (vl=F, v2=F, v3=F,
v4=T, Vv5=F)

D

v2 + v3 + vl +{v4d + V5
vl + v2 + Nv3°
vl + v2’

vli’+ v4

State: (vl=F, v2=F, v3=F,
v4=T, Vv5=F)

The first clause is already satisfied by v4 so we ignore it.
Since there are no pending assignments, and no conflict, BCP terminates

and we make a decision. No variables are unassigned, so the instance is

SAT, and we are done.

SATO

H. Zhang, M. Stickel, “An efficient algorithm for unit-propagation” Proc.
of the Fourth International Symposium on Artificial Intelligence and
Mathematics, 1996. (7 citations)

H. Zhang, “SATO: An Efficient Propositional Prover” Proc. of

International Conference on Automated Deduction, 1997. (63 citations)
e The Invariants

Each clause has a head pointer and a tail pointer.

All literals in a clause before the head pointer and after the tail pointer
have been assigned false.

If a clause can become unit via any sequence of assignments, then this
sequence will include an assignment to one of the literals pointed to by
the head/tail pointer.

Chaff vs. SATO: A Comparison of BCP

Chaff VL +Vv2’ +v4 +Vv5+vVv8 +v10 + v12 + VIS

SATO: BVL +Vv2' +Vv4 +v5 +v8 +v10 + v12 + VIS

Chaff vs. SATO: A Comparison of BCP

Chaff V1 +NZ2 +v4 +Vv5+v8 +v10 + v12 + VS

SATO: V1 +N2 +v4 +v5+v8 +v10 +v12 + viS

Chaff vs. SATO: A Comparison of BCP

Chaff Vv1+NVZ2 +v4d+v5+v8 +v10 +wv12 + v1h

SATO: V1 +WVZ2 +v4+v5+v8 +v10 +wvl2 + v1h

Chaff vs. SATO: A Comparison of BCP

Chaff Vv1+NVZ2 +v4d+Vv5+N8 +v10 +v12 +v1h

SATO: V1 +NV2 +v4d+v5+N8 +v10 +v12 +v1h

Chaff vs. SATO: A Comparison of BCP

Chaff Vv1+Nv2' +v4d+Vv5+N8 +v10 +v12 +v1h

> Implication

SATO: V1 +WVv2 +v4d+v5+N8 +v10 +v12 +v1h

Chaff vs. SATO: A Comparison of BCP

Chaff Vv1+wv2' +v4+v5+v8 +v10 +v12 +vl15

SATO: Vv1+ w2’ +v4 +v5+v8" +v10 +v12 +v15

Chaff vs. SATO: A Comparison of BCP

Chaff Vv1+NZ2 +v4d+v5+N8 +v10 +v12 +v1h

Backtrack in Chaff

SATO: Vv1+ w2’ +v4 +v5+v8" +v10 +v12 +v15

Chaff vs. SATO: A Comparison of BCP

Chaff Vv1+NVZ2 +v4d +v5+N8 +v10 +v12 +v1h

Backtrack in SATO

SATO: V1 +N2 +v4 +v5+v8 +v10 + vid2 + v15

BCP Algorithm Summary

e During forward progress: Decisions and Implications
Only need to examine clauses where watched literal is set to F
Can ignore any assignments of literalsto T
Can ignore any assignments to non-watched literals
e During backtrack: Unwind Assignment Stack
Any sequence of chronological unassignments will maintain our
invariants
So no action is required at all to unassign variables.
e Overall
Minimize clause access

Decision Heuristics -
Conventional Wisdom

e DLIS (Dynamic Largest Individual Sum) is a relatively simple

dynamic decision heuristic
Simple and intuitive: At each decision simply choose the assignment
that satisfies the most unsatisfied clauses.
However, considerable work is required to maintain the statistics
necessary for this heuristic — for one implementation:

Must touch *every* clause that contains a literal that has been set to true.
Often restricted to initial (not learned) clauses.

Maintain “sat” counters for each clause

When counters transition 0> 1, update rankings.

Need to reverse the process for unassignment.
The total effort required for this and similar decision heuristics is *much
more* than for our BCP algorithm,

e Look ahead algorithms even more compute intensive

C. Li, Anbulagan, “Look-ahead versus look-back for satisfiability
problems” Proc. of CP, 1997. (8 citations)

Chaff Decision Heuristic -
VSIDS

e Variable State Independent Decaying Sum
Rank variables by literal count in the initial clause database
Only increment counts as new clauses are added.
Periodically, divide all counts by a constant.
e Quasi-static:
Static because it doesn’t depend on variable state
Not static because it gradually changes as new clauses are added
Decay causes bias toward *recent* conflicts.

e Use heap to find unassigned variable with the highest ranking

Even single linear pass though variables on each decision would dominate
run-time!

e Seems to work fairly well in terms of # decisions
hard to compare with other heuristics because they have too much overhead

Interplay of BCP and the
Decision Heuristic

e This is only an intuitive description ...
Reality depends heavily on specific instance

e Take some variable ranking (from the decision engine)
Assume several decisions are made
Say v2=T, v7=F, v9=T, v1=T (and any implications thereof)
Then a conflict is encountered that forces v2=F

The next decisions may still be v7=F, vO=T, v1=T!
= VSIDS variable ranks change slowly...

But the BCP engine has recently processed these assignments ...
= SO these variables are unlikely to still be watched.

e In a more general sense, the more “active” a variable is,
the more likely it is to *not* be watched.

SAT Solver Competition!

SAT03 Competition

34 solvers, 330 CPU days, 1000s of benchmarks

SATO04 Competition is going on right now ...

e Summary

Summary

Lessons learnt:

e Space vs. time tradeoffs
DP vs. DLL

e Efficient pruning is critical
BCP and conflict driven learning

e Efficient implementations are key

Large database problem
Need to optimize memory operations

Focus on main operations
BCP and decision making

